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A solution is given for the plane contact problem of the theory of creep 

when frictional forces are taken into account. 

We take as our basic physical hypothesis the theory of steady creep 

as expressed by the equation 

si _=; Aoi??~ (0.1) 

Here .ei is the intensity of rates of deformation, oi is the stress 

intensity, m is the creep exponent and A is a creep coefficient. 

It should be pointed out that the method we develop for solving con- 

tact problems in creep theory in no way depends on the choice of the 

theory of steady creep as our initial physical hypothesis. We could 

equally have started from the theory of strain-hardening flI or from the 

theory of plastic heredity [21. 

The contact problem with frictional forces taken into account is 

solved under conditions of steady creep solely in order to achieve 

simplicity of presentation. 

1. The equilibrium of a half-plane under the simultaneous 
action of a vertical and a horizontal force applied to its 
surface, under conditions of steady creep. Consider the problem 

of the e~~librium of a half-plane loaded simultaneously by a vertical 

and a horizontal force applied at its surface when creep of the material 

takes place according to the power law (0.1) for the relation between 

stresses and rates of deformation. 
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Take the origin of a cylindrical system of coordinates r, 0 and z at 

the point of application of concentrated forces P and Q on the half- 

plane, with the directions of r, 0 and z as shown in Fig. 1. 

According to the theory of steady creep 

These equations assume that the material is incompressible, so that 

&=&,f&e=O (1.2) 

Also 

oi = &=l/(G - oe)" -k (0, - oz)2 i- (0, - oe)2 -k 6~~8~ 

si = $=I/(s, - se)" + (a, - s,)' + (s, - se)" + @,e2 

(1.3) 

(1.4) 

The equilibrium equations in cylindrical coordinates r, 9 and z 

applicable to the present problem are 

-& (I”&) + t$ - 60 = 0, (1.5) 

The relations between the components of the rate of deformation and 

the components of the displacement rate 

vector are 
Y P 

s 

Q 

+ 

au 1 au 
G-= z, Ee--y7gy++ (1.6) 
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X 
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where u, v and w are the components of 

the displacement rate along the coordi- 

nate axes r, 0 and z, which from now on, 
Fig. 1. for simplicity, will be called simply 

displacements. 

'Ihe differential equation of continuity of deformation is then 

a%? 
2 1 7.2 
de2 T 

a$+2$?_-ra;_22rE& -&+o (1.i) 

The boundary conditions for this problem are 

Ug = T,e = 0 at 0=f1j2n (1.8) 
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i.e. there are no external forces on the free surface of the half-plane, 
and 

1izx ‘123 
p=- \ o,r cm 8 de, err sin 8 d0 (W 0 

Q=- 1 

--~)$T: -l/$x 

for any section of the half-plane bounded by a cylindrical surface r = 

const . 

Suppose that there exists a relation of the form 

bi = Kg&it* to< CL<11 

between the stress intensities and 

the deformation rate. 

Here KG is a creep constant, 

and g is the creep exponent deter- 
mined e~erimenta~~y by simple 

creep tests. 

We shall seek an exact solution 

to the problem formulated in terms 

of displacements in the following 

form: 

u = z-t [fl (f) x’ (0) + fo’ @)I 
v = x [f2 09 x (0) - f0 (e)l 

2.E = 0 (?c fr: 1) (1.11) 

v 

1 

0.70 

0.65 

0.30 

0.15 

0.20 

0.25 

TABLE 1. 

DS 

-00.1 
-:.I289357 

-:. 1515839 
0.094387 
0.276217 

-0.00741579 
0.43677~ 
0.2364984 
0.3558958 
0.5701044 
0.3046570 

0.6366197 
0.6366197 
0.5772424 
0.5798148 
0.5611840 
0.5636824 
0.3984148 
0.4014432 
0.3241649 
0.328777 
0.3480877 
0.3520133 
0 e 3727948 
0.3761803 

Here fl(r), fz(r>, ,x(%1 and f,f0) are single-valued and continuous 

functions which can be determined over the whole half-plane 

- l/?3~ \<fI < l12z3 and r > 0 

Setting the shear stress Ire(t) equal to zero over the whole half- 

plane, and making use of relations (l.l), (1.2) and (1.6), we obtain 

the following equations for the determination of the functions f,(e), 

x(e), fl(r) and f2(r): 

r;(e) + fi?@) = 0, r2 fl” (d -i- rfl’ W- (1 - h2) f, (4 = 0 
x” (e) + h2x, ((3) = 0, f2 (r) = - [rfl’ W + fl WI (1.12) 

where A is a parameter as yet to be found. 
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Sciences. 

2. The plane contact problem in the theory of creep with 
frictional forces taken into account. 1. Formulation of the prob- 

lem and derivation of the basic equation. We proceed now to the deriva- 

tion of the basic equation of the contact problem of the theory of 

creep, taking into account frictional forces. 

Suppose that two bodies which possess the property of creep are in 

contact at a point or along a line and are pressed together by external 

forces, the resultant of which passes through the origin of coordinates 

in a direction perpendicular to the x-axis (Fig. 2). 

S uppose also that one of these compressed bodies (for example, Body 

2) is fixed and that there are no cohesive forces between the bodies, 

but simply forces of Coulomb friction. 

In addition, we shall assume, as 

usual, that Body 1 is in a state of 

limiting equilibrium, 

'lhe relation which must be satisfied 

by the displacements of points on the 
^ ^.... . 

area ot contact of the bodies is 

Fig. 2. 
211 + u2 = 6 - fl*@)- f,* (5) (2.1) 

where 6 = 6, + 6, is the relative displacement of the bodies in the y- 

direction and fl*(x) and f2*(x) are the equations of the surfaces bound- 

ing the first and second bodies. 

We denote the normal pressure on the area of contact by p(x) and the 

Coulomb friction force by q(x) = kp(x), where k is the coefficient of 

friction. Since the area of contact is usually small compared with the 

dimensions of the bodies themselves, we can assume that the displacements 

of these bodies will be the same as the displacements of points on the 

surfaces of two half-planes (an upper and a lower) under the action of 

the same normal pressure p(x) and Coulomb friction q(x) = kp(x) as the 

bodies under consideration. 

Let us divide up the diagram of pressure p(x) on the area of contact 

S(aBx<b), into elemental strips of width AS~ and height P(s;) 

(i=l, . . . . n) and consider the action of one of these strips (for ex- 

ample, the ith) on the lower half-plane. 

'Ihen vertical and horizontal forces 

Pi = p (Si) ASi, Qi = lcp (Si)Asi 
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will be applied at the point x = si on the surface of the half-plane. 

A point with coordinate x on the surface of this half-plane will be 
displaced in the direction of the axis 0~ by an amount v which, accord- 
ing to (1.14), is given by the formula 

II = g, [a2 - sign (.si - Z) a11 ISi - ZI1+pirn + C (2.2) 

or in a different form by 

v* = hip (si) A q, 2)* Z (v - C)p (m--l/p) (2.3) 
hi = grl’ [az - sign (Si - 2) Ul]p 1 Si - 2 I!+1 

In what follows we shall refer to v*(z) as the generalized displace- 
ment of points on the boundary of the half-plane. 

Note that in contrast to the true displacement v, the generalized 
displacement v* is linearly dependent on the applied force. 

In the case of simultaneous application of a system of forces p, = 
p(si)Asi (i = 1, 2, .‘,, r-4 we are not strictly speaking correct to use 
the solution already obtained, (Z-3), as a Green’s function for the pre- 
sent nonlinear problem. Because of the nonlinearity of the problem we 
have 

V* L== i hip (pi) A Si f A, WI 
i=l 

OX- 

v = [i hip (si) A si + A+ -t C (2.5) 
i==l 

where, in general, the quatity An for an arbitrary m is nonzero by 
virtue of the nonlinearity of interaction of the forces. At present an 
exact solution to this problem presents insuperable mathematical diffi- 
culties of principle. In order to derive an approximate solution we 
make use of the previous linear relation between the generalized dis- 
placement v* and the applied force and proceed as follows. 

It follows from the linearity of the problem [31 that in using the 
relation (3.65) of [31 to find the pressure under a die, An 3 0 when 
m = 1. In the case when m = 0 it follows from [31 that the pressure dis- 
tribution under the die, found on the assumption that An = 0, coincides 
with that corresponding to the familiar solution of Prandtl 1.53. 

It is therefore natural to suppose that for an arbitrary n within 
the range 0 < m < 1 the approximate solution derived on the assumption 
that A,, E 0 will not differ appreciably from the exact solution. We 
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shall thexefore take AR = 0 in (2.4) and (2.5) with an arbitrary value 
of a within the range 0 < IR < 1, i. e. 

V* = glp &a2 - sign (si - x) d(% - +-I p (si) Aq (2.6) 

We should emphasize once more that nowhere within the body does there 

exist the linear relation between true displacements zi and applied force 

on which depends the validity of the approximate superposition of the 
generalized displacements u* on the area of contact S(a \cx <b). 

In (2.6), in the limit as As - 0, we finally obtain the following ex- 

pression for the displacements v of points on the area of contact 

Sfa \<x Gb): 

2’ = g1 ic [(aa - sign fs - 2) dl]P p (s) ds na 
+c 

I3 1 s - 2 11-p 1 r_=+, (2.7) 

Here the constants aI, u2 and gl can be determined from (1.14). 

Making use of (2.1) and (2.1), we obtain the following singular 

Fredholm integral equation of the first kind for the pressure: 

[az - sign (s - Z) a# p(s) ds I____ -- 
(s--x]l--p 

=: F (5, T) (r = const) 

Here 

(2.W 

The constant y in (2.8) will be found later. 

‘thus the singular integral equation (2.8) is the basic equation of 

the pjane contact problem of the theory of nonlinear creep when 

frictional forces are taken into account and when a relation of the 

form (1.10) exists between the intensities of rate of diformation and 

stress. 

2. Solution of tfK basic integral equation of the plane contact prob- 

tern of /jrre t)reoq of creep with frictionat forces faken into account. 

Suppose that after the bodies are compressed the area of contact S is 
defined by the interval - a<x <a of the x-axis. Then the basic inte- 
gral equation (2.8) assumes the form 

“f s a2 - sign (s - Z) a# p(S)ds 
= F&Y) 

--a 
Is--rif-‘” 

(2.10) 

Here F(x, y) is a continuous function, 2a is the width of the area 

of contact and y is a constant which for a given width of contact can 



The contact probters in the theory of creep 1251 

be found from the equation of equilibrium 

a 

P= 
s 

P (4 dx 
--a 

(2.11) 

where P is the resultant of the external forces acting on the compressed 
body. According to [41 the general solution of equation (2.10) is 

Here g(s, a) is the solution to the aquation 

a [a~ - sign (s 
s 

- 4 ~1~ g (a, a) ds 
~s-~y--Y ~ = 1 (2.13) 

-CT 
g*(s, a) is the solution to the transposed equation 

(2.14) 

and 

M (a) = 1 g (s, a) ds (2.15) 

Thus, if solutions to equatizs (2,1.3) and (2.14) are known, then 

according to (2,12) the determination of the contact pressure p(x) re- 

duces to quadratures. 

3. The pressure under a rigid die on o haIf-plane mder conditions 
of steady creep &hen frictional forces are taken into account. Consider 

the problem of a rigid die with a rectifinear base pressed on to a half- 

plane under conditions of steady creep, taking into account frictional 

forces. 

Suppose that a rigid die is pressed on to a half-plane (Fig. 3). We 

shall assume that the die is in a state of limiting equilibrium, i,e. 

that a horizontal force Q = kP acts on it in the direction of the X- 

axis. Then from (2.9) for this case we have 

fo (x) = 0, F (G T) = T" 

and the integral epation (2.10) assumes the form 
II 

(2"lcj) 

. . 

(2.21) 
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On the basis of (2.13) and (2.17) we evidently have that 

P (4 = r” &? (5, 4 (2.18) 

Substituting this expression for p(x) in (2.11) and (2.18) we find 

p = P ( 1 g (? a) dx i’ , p (2) = Pg (2, a) ( ‘1 g (LX, a) dz j-r (2.19) 
--a --(I 

We now determine the function g(s, a), i.e. we solve the singular 
integral equation (2.13). 

We shall try to find a solution to this equation in the form 

g(s, u) = N U i- S) ( 1 '/*P--P 

I$ _ ,Z)P a - s 
(2.20) 

where N, p are unknown quantities and 0 < p < u. Substituting this ex- 

pression for g(s, a) into equation 

(2.13), we obtain 

1 

Fig. 3. 

It can easily be shown that for the equality (2.21) to be satisfied 

it is necessary and sufficient for the constants N and p to have the 

following values*: 

N=$, p’f sin-’ (ur. f u,)p H (2.22) 

where 

H - I/@, + a#‘* -1 2 (u,z “:J; cos Jcp + (a* - a1)21* 
(2.23) 

Substituting the expression for g(s, a) given by (2.20) into (2.19) 
and rearranging, we obtain the following formula for the pressure P(Z) 

l Note that the integral equation (2.14) can be solved by the method 
evolved in [3,41. Here the parameters N and p are determined by a 

different method which was kindly indicated to the authors by I.D. 

Zaslavskii. 
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on the area of contact under the die: 

I-+) = 
r V/Z (3 - W r (1 - ‘12 M r (p - P) sin n (v - P) v 

&--ILr (1 - PI 

a + z ( 1 VzP-P 

a - cc) 

* 

(2.24) 

Here r(s) is the gamma-function and 

found from formula (2.22). 

p is a constant which can be 

It is not difficult to see that if friction is not taken into account, 

then u1 = 0 and consequently p = l/Z p. We then find from (2.24) that 

P(X) = 
r P/a (3 - iw (‘iz pL) sin (*/z w) 

.1---p V_n JI I/(.~: Z?)P 
(2.25) 

which coincides with the solution obtained in [31 to the problem of a 

P 

1 

0.70 

0.65 

0.30 

0.15 

0.20 

0.25 

- 

/ 

T- 

TABLE 2. 

x = ‘/,a x = Qua 

1.0360 1.1500 
1.0360 I.1500 
1.2216 1.3209 
1.2262 1.3325 
1.2502 1.3443 
1.2582 1.3637 
2.466 1.638 
0.974 1.072 
1.5406 1.7228 
1 a3112 1.4120 
4.5190 1.6986 
1.1049 1.4075 
2.4978 1.6749 
1.0345 1.2437 

-- - 

I - 

t 

x = %a 

1.5100 
1.5100 
1.5950 
1.6212 
1.6024 
1.6431 
2.144 
0.982 
2.2557 
1.5859 
2.2241 
1.1975 
2.193 
1.081 

rigid die with a rectilinear 

base pressed on to a half- 

plane under conditions of 

steady creep and in the ab- 

sence of friction. 

As an example, consider 

the numerical determination 

of the pressure under a rigid 

die with a rectilinear base 

pressed onto a half-plane 

under conditions of nonlinear 

creep with friction taken 

into account. 

Table 2 gives values of 

the pressure 

at the points x = l/4 a, x = l/2 u and x = 3/4 a for various values of 

the creep exponent p for k = 0 and k = 0.1. 
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